## Section 16.3 Conservative Vector Fields

FTC for Conservative Vector Fields Properties of Conservative Vector Fields Path Independence, Sketch of the Proof Path-Independence, Example 1 Path Independence, Sketch of the Proof of Converse

Simply-Connected Domains, the Theorem Applications in Physics

## 1 FTC for Conservative Vector Fields

## Joseph Phillip Brennan Jila Niknejad

### **Conservative Vector Fields**

Recall from §16.1 that a vector field  $\vec{F}$  is **conservative** if it has a **scalar potential**, i.e., a function f such that  $\nabla f = \vec{F}$ .

- If F is conservative on an open connected domain, then any two scalar potentials of F differ by a constant.
- Potentials can be calculated by the "antidifferentiate and match up the pieces" method.
- If  $\vec{F}$  is conservative, then  $curl(\vec{F}) = \vec{0}$ .

#### Fundamental Theorem for Conservative Vector Fields

Assume that  $\vec{F} = \nabla f$  on an open connected domain  $\mathcal{D}$ .

If  $\vec{r}$  is a path along a curve  $\mathcal C$  from P to Q in  $\mathcal D,$  then

$$\int_{\mathcal{C}} \vec{\mathsf{F}} \cdot d\vec{\mathsf{r}} = f(Q) - f(P).$$

• If  $\vec{r}$  is a path on the x-axis, then this result reduces to FTC.

#### Fundamental Theorem for Conservative Vector Fields

Assume that  $\vec{F} = \nabla f$  on an open connected domain  $\mathcal{D}$ . If  $\vec{r}$  is a path along a curve  $\mathcal{C}$  from P to Q in  $\mathcal{D}$ , then

$$\int_{\mathcal{C}} \vec{\mathsf{F}} \cdot d\vec{\mathsf{r}} = f(Q) - f(P)$$

<u>Proof</u>: Assume  $\vec{r}(a) = P$  and  $\vec{r}(b) = Q$ .

$$\int_{\mathcal{C}} \vec{\mathsf{F}} \cdot d\vec{\mathsf{r}} = \int \nabla f \cdot d\vec{\mathsf{r}} = \int_{a}^{b} \nabla f(\vec{\mathsf{r}}(t)) \cdot \vec{\mathsf{r}}'(t) dt$$

$$= \int_{a}^{b} \frac{d}{dt} \left( f\left(\vec{r}\left(t\right)\right) \right) dt \qquad (by Chain Rule)$$

$$= f(\vec{r}(t))\Big|_{t=a}^{t=b}$$
(by FTC)  
=  $f(\vec{r}(b)) - f(\vec{r}(a)) = f(Q) - f(P).$ 

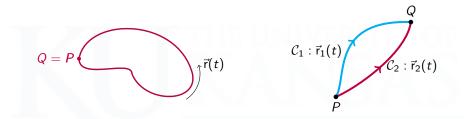
Note: The proof works for any open domain; we assume a connected domain for conservative fields to keep the potential functions the same up to a constant.

## 2 Properties of Conservative Vector Fields

## by Joseph Phillip Brennan Jila Niknejad

## **Properties of Conservative Vector Fields**

**Consequence 1:** If C is a closed curve (i.e., P = Q), then  $\int_{C} \vec{F} \cdot d\vec{r} = 0$ .



**Consequence 2:** If  $C_1$  and  $C_2$  are paths in  $\mathcal{D}$  from P to Q, then

$$\int_{\mathcal{C}_1} \vec{\mathsf{F}} \cdot d\vec{\mathsf{r}} = \int_{\mathcal{C}_2} \vec{\mathsf{F}} \cdot d\vec{\mathsf{r}}$$

That is, conservative vector fields are **path-independent:** line integrals **depend only on the endpoints** of the path of integration. (This is not in general true for non-conservative fields!)

## Path-Independence of Line Integrals

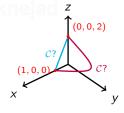
**Example 1:** Suppose  $\vec{F} = \nabla f$  where  $f(x, y, z) = \frac{-1}{x^2 + y^2 + z^2}$ . Find the work done by  $\vec{F}$  in moving an object along a smooth curve C from (1, 0, 0) to (0, 0, 2) without passing through the origin.

<u>Solution</u>: Since  $\vec{F}$  is conservative on  $\mathbb{R}^3 - \{(0,0,0)\}$ , the Fundamental Theorem for Conservative Vector Fields says that

$$\int_{\mathcal{C}} \vec{F} \cdot d\vec{r} = f(0,0,2) - f(1,0,0) = \frac{3}{4}$$

## Joseph Phillip Brennan

You don't need to know the path  $\mathcal C$  because the potential function is given!



## Path-Independence of Line Integrals

- Conservative vector fields have path-independent line integrals.
- Conversely, suppose F has path-independent line integrals in an open connected domain D. Pick a starting point P ∈ D. For every Q ∈ D, let C<sub>Q</sub> be any path in D from P to Q.

Then the function  $f : \mathcal{D} \to \mathbb{R}$  defined by

$$f(Q) = \int_{\mathcal{C}_Q} \vec{\mathsf{F}} \cdot d\vec{\mathsf{r}}$$

turns out to be a scalar potential function for  $\vec{F}$ .

#### Theorem

A vector field  $\vec{F}$  on an open path-connected domain  ${\cal D}$  is path-independent if and only if it is conservative.

## 3 Simply-Connected Domains, the Theorem

## by Joseph Phillip Brennan Jila Niknejad

## **Conservative Fields and Simply-Connected Domains**

- We know that conservative vector fields are irrotational. I.e., if  $\vec{F}$  is conservative then curl( $\vec{F}$ ) =  $\vec{0}$ .
- Question: Is every irrotational vector field conservative?



A path-connected domain  $\mathcal{D}$  in  $\mathbb{R}^2$  is simply connected if it has no holes. (More precisely, every loop in  $\mathcal{D}$  can be contracted to a point while staying in  $\mathcal{D}$ .)

simply-connected.

#### Theorem

Let  $\vec{F}$  be a vector field on a simply connected domain  $\mathcal{D}$ . If curl $(\vec{F}) = \vec{0}$  in  $\mathcal{D}$ , then  $\vec{F}$  is conservative.

## **Conservative Fields and Simply-Connected Domains**

**Example 2:** Is  $\vec{F}(x, y) = \langle 3 + 2xy, x^2 - 3y^2 \rangle$  conservative? Evaluate  $\int_{\mathcal{C}} \vec{F} \cdot d\vec{r}$  when  $\mathcal{C}$  is a path from (1, 1) to (2, 1).

<u>Solution</u>: The domain of  $\vec{\mathsf{F}}$  is  $\mathbb{R}^2,$  which is simply connected.

$$\operatorname{curl}(\vec{\mathsf{F}}) = \begin{vmatrix} \vec{\mathsf{i}} & \vec{\mathsf{j}} & \vec{\mathsf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 3 + 2xy & x^2 - 3y^2 & 0 \end{vmatrix} = (2x - 2x)\vec{\mathsf{k}} = \vec{\mathsf{0}}$$

So  $\vec{F}$  is conservative by the previous theorem.

Reminder: find a potential f by antidifferentiating and matching pieces:

$$f(x,y) = \int \vec{F}_1 \, dx = \int 3 + 2xy \, dx = 3x + x^2y + a(y)$$
  
=  $\int \vec{F}_2 \, dy = \int x^2 - 3y^2 \, dy = x^2y - y^3 + b(x)$   
$$f(x,y) = \underbrace{3x + x^2y - y^3}_{A \text{ potential}} + C$$
  
$$\int_C \vec{F} \cdot d\vec{r} = f(2,1) - f(1,1) = (6 + 4 - 1 + C) - (3 + 1 - 1 + C) = 6$$

# Conservative Fields and Simply-Connected Domains

**Example 3:** Is 
$$\vec{F}(x,y) = \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle$$
 conservative?

<u>Answer</u>: No, because it is not path-independent. If C is the unit circle, with standard parametrization  $\vec{r}(t) = \langle \cos(t), \sin(t) \rangle$  for  $0 \le t \le 2\pi$ , then

$$\int_{\mathcal{C}} \vec{\mathsf{F}} \cdot d\vec{\mathsf{r}} = \int_{0}^{2\pi} \underbrace{\langle -\sin(t), \cos(t) \rangle}_{\langle -\sin(t), \cos(t) \rangle} \cdot \underbrace{\langle -\sin(t), \cos(t) \rangle}_{\langle -\sin(t), \cos(t) \rangle} dt = \int_{0}^{2\pi} dt = 2\pi.$$
On the other hand

$$\frac{dF_1}{dy} = \frac{dF_2}{dx} = \frac{y^2 - x^2}{(x^2 + y^2)^2} \quad \therefore \quad \operatorname{curl}(\vec{\mathsf{F}}) = \begin{vmatrix} \vec{\mathsf{i}} & \vec{\mathsf{j}} & \vec{\mathsf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & 0 \end{vmatrix} = \vec{\mathsf{0}}.$$

What is going on here? The domain of  $\vec{F}$  is  $\mathbb{R}^2 - \{(0,0)\}$ , which is not simply connected!

## 4 Applications in Physics

## Joseph Phillip Brennan Jila Niknejad

## Conservative Vector Fields in Physics (Optional)

Let  $\vec{F}$  be a continuous force field which moves an object of mass *m* along a path C parametrized by  $\vec{r}$  from  $A = \vec{r}(a)$  to  $B = \vec{r}(b)$ .

According to Newton's Second Law of Motion,  $\vec{F}(\vec{r}(t)) = m\vec{r}''(t)$ . The work done by  $\vec{F}$  on the object is

$$\int_{\mathcal{C}} \vec{F} \cdot d\vec{r} = \int_{a}^{b} m\vec{r}''(t) \cdot \vec{r}'(t) dt = m \int_{a}^{b} \frac{d}{dt} \left( \frac{\vec{r}'(t) \cdot \vec{r}'(t)}{2} \right) dt$$
$$= \frac{m}{2} \int_{a}^{b} \frac{d}{dt} \left( \|\vec{r}'(t)\|^{2} \right) dt = \frac{m}{2} \left[ \|\vec{r}'(t)\|^{2} \right]_{a}^{b}$$

Therefore, **Work** =  $\frac{m}{2} (\|\vec{v}(b)\|^2 - \|\vec{v}(a)\|^2) = K(B) - K(A)$ where K(Q) = kinetic energy of the object when it is at point Q.

## **Conservative Vector Fields in Physics (Optional)**

Work 
$$= \int_{\mathcal{C}} \vec{F} \cdot d\vec{r} = K(B) - K(A)$$

where K(Q) = kinetic energy of the object at point Q. Let  $\vec{F}$  be a conservative force field with scalar potential f(x, y, z). The **potential energy** of an object at (x, y, z) is P(x, y, z) = -f(x, y, z). By the Fundamental Theorem for Conservative Vector Fields,

$$\int_{\mathcal{C}} \vec{\mathsf{F}} \cdot d\vec{\mathsf{r}} = -\int_{\mathcal{C}} \nabla P \cdot d\vec{\mathsf{r}} = P(A) - P(B)$$

Law of Conservation of Energy

P(A) + K(A) = P(B) + K(B)