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1 FTC for Conservative Vector Fields



Conservative Vector Fields
Recall from §16.1 that a vector field F⃗ is conservative if it has a scalar
potential, i.e., a function f such that ∇f = F⃗.

If F⃗ is conservative on an open connected domain, then any two
scalar potentials of F⃗ differ by a constant.
Potentials can be calculated by the “antidifferentiate and match up
the pieces” method.
If F⃗ is conservative, then curl(F⃗) = 0⃗.

Fundamental Theorem for Conservative Vector Fields
Assume that F⃗ = ∇f on an open connected domain D.

If r⃗ is a path along a curve C from P to Q in D, then
ˆ
C

F⃗ · d r⃗ = f (Q)− f (P) .

If r⃗ is a path on the x-axis, then this result reduces to FTC.



Fundamental Theorem for Conservative Vector Fields
Assume that F⃗ = ∇f on an open connected domain D. If r⃗ is a path
along a curve C from P to Q in D, then

ˆ
C

F⃗ · d r⃗ = f (Q)− f (P)

Proof: Assume r⃗ (a) = P and r⃗ (b) = Q.

ˆ
C

F⃗ · d r⃗ =
ˆ

∇f · d r⃗ =
ˆ b

a

∇f (⃗r (t)) · r⃗ ′(t) dt

=

ˆ b

a

d

dt

(
f (⃗r (t))

)
dt (by Chain Rule)

= f (⃗r (t))
∣∣∣t=b

t=a
(by FTC)

= f (⃗r (b))− f (⃗r(a)) = f (Q)− f (P).

Note:The proof works for any open domain; we assume a connected domain for conservative fields to keep the potential functions the same up to a constant.



2 Properties of Conservative Vector Fields



Properties of Conservative Vector Fields

Consequence 1: If C is a closed curve (i.e., P = Q), then
ˆ
C

F⃗ · d r⃗ = 0.

Q =P r⃗(t)Q = P
C1 : r⃗1(t)

C2 : r⃗2(t)

P

Q

Consequence 2: If C1 and C2 are paths in D from P to Q, then
ˆ
C1

F⃗ · d r⃗ =
ˆ
C2

F⃗ · d r⃗

That is, conservative vector fields are path-independent: line integrals
depend only on the endpoints of the path of integration. (This is not
in general true for non-conservative fields!)



Path-Independence of Line Integrals

Example 1: Suppose F⃗ = ∇f where f (x , y , z) =
−1

x2 + y2 + z2 . Find the

work done by F⃗ in moving an object along a smooth curve C from
(1, 0, 0) to (0, 0, 2) without passing through the origin.

Solution: Since F⃗ is conservative on R3 − {(0, 0, 0)}, the Fundamental
Theorem for Conservative Vector Fields says that

ˆ
C

F⃗ · d r⃗ = f (0, 0, 2)− f (1, 0, 0) =
3
4
.

You don’t need to know the path C because the
potential function is given!

x y

z

C?

C?

(0, 0, 2)

(1, 0, 0)



Path-Independence of Line Integrals

Conservative vector fields have path-independent line integrals.
Conversely, suppose F⃗ has path-independent line integrals in an open
connected domain D. Pick a starting point P ∈ D. For every
Q ∈ D, let CQ be any path in D from P to Q.

Then the function f : D → R defined by

f (Q) =

ˆ
CQ

F⃗ · d r⃗

turns out to be a scalar potential function for F⃗.

Theorem
A vector field F⃗ on an open path-connected domain D is
path-independent if and only if it is conservative.



3 Simply-Connected Domains, the Theorem



Conservative Fields and Simply-Connected
Domains

We know that conservative vector fields are irrotational.
I.e., if F⃗ is conservative then curl(F⃗) = 0⃗.
Question: Is every irrotational vector field conservative?

Examples of regions in R2 that are not

simply-connected.

A path-connected domain D in R2 is
simply connected if it has no holes. (More
precisely, every loop in D can be contracted
to a point while staying in D.)

Theorem
Let F⃗ be a vector field on a simply connected domain D.
If curl(F⃗) = 0⃗ in D, then F⃗ is conservative.



Conservative Fields and Simply-Connected
Domains

Example 2: Is F⃗(x , y) =
〈
3 + 2xy , x2 − 3y2

〉
conservative? Evaluateˆ

C
F⃗ · d r⃗ when C is a path from (1, 1) to (2, 1).

Solution: The domain of F⃗ is R2, which is simply connected.

curl(F⃗) =

∣∣∣∣∣∣
i⃗ j⃗ k⃗
∂
∂x

∂
∂y

∂
∂z

3 + 2xy x2 − 3y2 0

∣∣∣∣∣∣ = (2x − 2x )⃗k = 0⃗

So F⃗ is conservative by the previous theorem.
Reminder : find a potential f by antidifferentiating and matching pieces:

f (x , y) =

ˆ
F⃗1 dx =

ˆ
3 + 2xy dx = 3x + x2y + a(y)

=

ˆ
F⃗2 dy =

ˆ
x2 − 3y2 dy = x2y − y3 + b(x)

f (x , y) = 3x + x2y − y3︸ ︷︷ ︸
A potential

+ C

ˆ
C

F⃗ · d r⃗ = f (2, 1)− f (1, 1) = (6 + 4 − 1 + C )− (3 + 1 − 1 + C ) = 6



Conservative Fields and Simply-Connected
Domains

Example 3: Is F⃗(x , y) =
〈

−y

x2 + y2 ,
x

x2 + y2

〉
conservative?

Answer: No, because it is not path-independent. If C is the unit circle,
with standard parametrization r⃗(t) = ⟨cos(t), sin(t)⟩ for 0 ≤ t ≤ 2π,
then

ˆ
C

F⃗ · d r⃗ =
ˆ 2π

0

F⃗(⃗r(t))︷ ︸︸ ︷
⟨− sin(t), cos(t)⟩ ·

r⃗ ′(t)︷ ︸︸ ︷
⟨− sin(t), cos(t)⟩dt =

ˆ 2π

0
dt = 2π.

On the other hand,

dF1

dy
=

dF2

dx
=

y2 − x2

(x2 + y2)2
∴ curl(F⃗) =

∣∣∣∣∣∣
i⃗ j⃗ k⃗
∂
∂x

∂
∂y

∂
∂z

F1 F2 0

∣∣∣∣∣∣ = 0⃗.

What is going on here? The domain of F⃗ is R2 − {(0, 0)}, which is not
simply connected!



4 Applications in Physics



Conservative Vector Fields in Physics (Optional)

Let F⃗ be a continuous force field which moves an object of mass m along
a path C parametrized by r⃗ from A = r⃗ (a) to B = r⃗ (b).

According to Newton’s Second Law of Motion, F⃗ (⃗r(t)) = m r⃗ ′′(t).

The work done by F⃗ on the object is

ˆ
C

F⃗ · d r⃗ =

ˆ b

a

m r⃗ ′′(t) · r⃗ ′(t) dt = m

ˆ b

a

d

dt

(
r⃗ ′(t) · r⃗ ′(t)

2

)
dt

=
m

2

ˆ b

a

d

dt

(
∥⃗r ′(t)∥2) dt =

m

2
[
∥⃗r ′(t)∥2]b

a

Therefore, Work =
m

2
(
∥⃗v(b)∥2 − ∥⃗v(a)∥2

)
= K (B)− K (A)

where K (Q) = kinetic energy of the object when it is at point Q.



Conservative Vector Fields in Physics (Optional)

Work =

ˆ
C

F⃗ · d r⃗ = K (B)− K (A)

where K (Q) = kinetic energy of the object at point Q.
Let F⃗ be a conservative force field with scalar potential f (x , y , z).
The potential energy of an object at (x , y , z) is
P(x , y , z) = −f (x , y , z).
By the Fundamental Theorem for Conservative Vector Fields,

ˆ
C

F⃗ · d r⃗ = −
ˆ
C
∇P · d r⃗ = P(A)− P(B)

Law of Conservation of Energy
P(A) + K (A) = P(B) + K (B)
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